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The effects of the Coriolis force on the elliptical instability are studied experimentally
in cylindrical and spherical rotating containers placed on a table rotating at a fixed
rate Ω̃G. For a given set-up, changing the ratio ΩG of global rotation Ω̃G to flow
rotation Ω̃F leads to the selection of various unstable modes due to the presence
of resonance bands, in close agreement with the normal-mode theory. No instability
occurs when ΩG varies between −3/2 and −1/2 typically. On decreasing ΩG toward
−1/2, resonance bands are first discretized for ΩG > 0 and progressively overlap for
−1/2 < ΩG < 0. Simultaneously, the growth rates and wavenumbers of the prevalent
stationary unstable mode significantly increase, in quantitative agreement with the
viscous short-wavelength analysis. New complex resonances have been observed for
the first time for the sphere, in addition to the standard spin-over. We argue that
these results have significant implications in geo- and astrophysical contexts.

1. Introduction
The elliptical instability corresponds to the three-dimensional destabilization of

two-dimensional rotating flows with elliptical streamlines. It was first discovered in
the context of strained vortices (Moore & Saffman 1975; Tsai & Widnall 1976), but it
generally appears in any turbulent flow exhibiting coherent structures with elliptical
motion (Pierrehumbert 1986; Bayly 1986). The elliptical instability also occurs in a
large range of industrial and natural systems, where the ellipticity is generated either
by vortex interactions or by tidal effects. It is for instance expected in the wake
vortices behind aircrafts (e.g. Leweke & Williamson 1998), in the intense vortical
structures of the atmosphere and the ocean (e.g. Afanasyev 2002), in planetary liquid
cores (e.g. Aldridge et al. 1997; Kerswell & Malkus 1998; Lacaze et al. 2006), or
in binary stars and accretion disks (e.g. Lubow, Pringle & Kerswell 1993; Rieutord
2003; Lebovitz & Zweibel 2004). Since its discovery in the mid-1970s, the elliptical
instability has thus received considerable attention, theoretically, experimentally and
numerically (see for instance the review by Kerswell 2002).

In most practical cases, the strain field responsible for the elliptical pattern rotates
around the same axis as the flow, but with a different rate and possibly in the opposite
direction. One can thus ask how this global rotation influences the development of
the elliptical instability through the induced Coriolis force. Various theoretical studies
have been performed, using either a short-wavelength analysis (Craik 1989; Leblanc
& Cambon 1997; Le Dizès 2000) or a normal-mode analysis (Gledzer & Ponomarev
1992; Kerswell 1994). They all tend to demonstrate that the global rotation has
a stabilizing effect on cyclones and a destabilizing effect on anticyclones, except
when the global rotation almost compensates for the flow rotation, in which case
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Figure 1. (a) Sketch and (b) photo of the experimental set-up, with the deformed container
(either a sphere or a cylinder) placed on the rotating table.

the elliptical instability disappears. This has been confirmed by numerical studies
for specific vortices, such as Stuart vortices (Leblanc & Cambon 1998; Potylitsin
& Peltier 1999) and Taylor–Green vortices (Sipp, Lauga & Jacquin 1999). From an
experimental point of view, Boubnov (1978) first studied the stability of rotating flows
in an ellipsoid filled with water, which was sharply stopped after solid-body rotation
was reached; the whole set-up was placed on a table rotating at a fixed velocity.
He observed both the stabilizing effect of the Coriolis force on rotation around
the middle axis of the ellipsoid and the destabilizing effect of the Coriolis force on
rotation around the minor and major axes. Using the same method, Vladimirov,
Tarasov & Ribok (1983) observed the stabilization of the elliptical instability by the
cyclonic Coriolis force in a rigid cylinder of elliptical cross-section. Afanasyev (2002)†
generated vortex pairs on a rotating table and observed the selective destabilization
of the elliptical anticyclones, with an increasing wavelength when the global rotation
goes to zero. Stegner, Pichon & Beunier (2005) noticed the same behaviour in the
anticyclonic columns of rotating Bénard–von Kármán vortex streets, provided the
ratio ΩG between the global angular velocity Ω̃G and the flow angular velocity
Ω̃F is greater than −1. In all these experiments however, the elliptical instability
was observed during a limited time and competed with centrifugal instabilities. No
systematic conclusions could thus be derived from these interesting trends.

In the present paper, we focus on the elliptical instability and systematically study
the effects of the Coriolis force, both in a rotating cylinder and in a rotating spheroid.
Our experimental set-up is inspired by Malkus (1989): it is similar to the one used in
Eloy, Le Gal & Le Dizès (2003) and Lacaze, Le Gal & Le Dizès (2004). Unlike previous
devices, it permits analysis of growth and saturation of the elliptical instability. As
shown in figure 1, a deformable and transparent container – either a cylinder of radius

† See also the study by J. Wells, http://www.physics.mun.ca/∼wellsj/stability.html
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R̃ = 2.75 cm and height H̃ = 21.4 cm or a hollow sphere of radius R̃ = 2.175 cm –
is set in motion about its axis (Oz) with an angular velocity Ω̃F up to 300 r.p.m.
and is simultaneously deformed elliptically by two fixed rollers parallel to (Oz). The
container is filled with water seeded with anisotropic particles (kalliroscope). A light
sheet is formed in a plane containing the rotation axis for visualization, allowing the
measurement of wavelengths and frequencies of excited modes. In the present study,
the whole set-up (including camera and light projector) is placed on a 0.5 m diameter
rotating table, which allows rotation with angular velocity Ω̃G up to ±60 r.p.m.

The paper is organized as follow. In § 2, we focus on the cylindrical geometry:
theoretical results both from the global and short-wavelength analyses are presented
and compared quantitatively with our experiments. We demonstrate that the global
rotation allows excitation of various modes of the elliptical instability in a given
cylinder with a fixed aspect ratio H̃ /R̃, in contrast to previous experiments where
the length of the cylinder was adjusted so as to excite a given resonance (e.g. Eloy
et al. 2003). In § 3, we then show how the global rotation allows the tuning of various
eigenmodes of the sphere, hence the excitation of complex elliptical instabilities in
addition to the standard spin-over observed without Coriolis effects (e.g. Lacaze et al.
2006). To the best of our knowledge, this is the first time these complexe modes have
been experimentally observed, except for the twin-vortex mode mentioned by Boubnov
(1978). Finally in the last section, the main results of the paper are summarized and
some geophysical and astrophysical consequences of our study are briefly discussed.

2. Theoretical and experimental study in the cylinder
2.1. Theoretical approaches

2.1.1. Inviscid global study

The elliptical instability mechanism has been reviewed in Kerswell (2002). It is
associated with the parametric resonance of two inertial waves of the undistorted
circular flow induced by the underlying strain field (e.g. Waleffe 1990; Kerswell 2002).
For small deformations, the global (or normal-mode) theory permits the conditions of
resonance for a given geometry to be calculated explicitly and provides information
on the structure of the eigenmodes. Results for the elliptical instability in a cylinder
with Coriolis effects have been obtained by Kerswell (1994): they are here summarized
and adapted to our particular experimental situation.

In the following, variables are non-dimensionalized using the characteristic time
scale 1/Ω̃F and the characteristic length scale R̃. We work in the frame rotating with
the rotating table, i.e. in the frame where the elliptical deformation is stationary. In
the undistorted cylinder, we can look, in cylindrical coordinates, for normal neutral
modes of the form

(u, p) = (u(r) cos(γ z), v(r) cos(γ z), w(r) sin(γ z), p(r) cos(γ z))ei(mθ−ωt), (2.1)

where the vertical boundary conditions simply imply

γ = nπR̃/H̃ , (2.2)

n being an integer corresponding to the number of axial half–periods. Following
Waleffe (1990) and taking into account the additional Coriolis term 2ΩG×u coming
from the global rotation, the linearized Euler equations can be reduced to a single
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Bessel equation for the axial velocity w:

r
d

dr

(
r
dw

dr

)
+ (β2r2 − m2)w = 0, (2.3)

where the radial wavenumber β is given by

β = γ

√
4(1 + ΩG)2

λ2
− 1 (2.4)

and λ= ω−m is the mode frequency in the frame rotating with the flow. If we enforce
the radial boundary condition u(1) = 0, i.e.

r
dw

dr
+

2m(1 + ΩG)

λ
w = 0 at r = 1, (2.5)

on the regular solution of (2.3) w = Jm(βr), we obtain the dispersion relation between
the frequency λ (or ω in the non-rotating frame) and the axial wavenumber γ for
given values of m and ΩG. The radial wavenumber β is found to be discretized. There
are infinitely many branches associated with each wavenumber, which can be labelled
by the number of zeros of the radial velocity eigenmode. According to (2.4), they lie
in the interval

|λ| � |2(1 + ΩG)|. (2.6)

As explained in Kerswell (2002), the elliptical instability results from a triadic
resonance between the elliptical deformation and two normal modes (ma, γa, ωa) and
(mb, γb, ωb) of the undistorted circular flow. The conditions of resonance are simply

mb = ma + 2, γa = γb, ωa = ωb. (2.7)

According to (2.6), this can only be achieved if

ΩG � −1/2 or ΩG � −3/2, (2.8)

i.e. there exists a forbidden band for ΩG between −3/2 and −1/2 where the elliptical
instability cannot develop.

In the inviscid framework, numerous resonances are unstable. But combinations
of normal modes having the same radial structure are significantly more amplified
than the others and are in fact the only ones observed in experiments (Eloy, Le Gal
& Le Dizès 2000): they are named principal modes and denoted (ma, mb, i), where i

corresponds to the label of the branches involved in the resonance.
One can notice that the normal mode equations (2.3)–(2.5) are similar to those

without global rotation (e.g. Waleffe 1990), provided the frequency λ is replaced by

λ̃ = λ/(1 + ΩG). (2.9)

Hence, dispersion relation curves given for instance by Eloy et al. (2003) remain
unchanged, representing ω̃ = λ̃+ m instead of ω = λ+ m (see figure 2). The condition
for resonance ωa = ωb is now

ω̃b − ω̃a =
2ΩG

1 + ΩG
. (2.10)

As illustrated in figure 3, resonances with various structures can be excited in a
given cylinder by changing the global rotation rate ΩG only. When ΩG goes toward
−1/2+ or −3/2−, numerous possible resonances are very close and the wavenumber
of the instability rapidly increases: experiments will tell us which mode is actually
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Figure 2. Dispersion relation points of the m= −1 (stars) and m= 1 (squares) eigenmodes
for the first and second smaller radial wavenumbers β (large and small symbols respectively)
in the cylinder of height H̃ = 21.4 cm used in the experiments, depending on the number n of
axial half-wavelengths. For each given axial and radial structure, the corresponding resonance
is excited provided the distance between the m= 1 and m= −1 curves is given by (2.10): three
examples with or without global rotation are shown.
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Figure 3. Theoretical predictions for the resonant values of the global rotation rate as
a function of the number n of axial half-periods in our experimental cylinder of height
H̃ = 21.4 cm: large stars stand for the modes (−1, 1, 1), small stars for the modes (−1, 1, 2), large
squares for the modes (0, 2, 1), small squares for the modes (0, 2, 2), large triangles for the modes
(1, 3, 1) and small triangles for the modes (1, 3, 2). The forbidden band −3/2 <ΩG < −1/2 is
delimited by the dashed lines.
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selected. On the contrary, discretized instabilities with relatively small wavenumbers
are expected further away from the forbidden band −3/2 <ΩG < −1/2 and will be
independently excited in our experiment.

2.1.2. Local approach

In addition to the conditions for resonance given by the global approach, the local
approach allows the analytical determination of the growth rate of the instability.
It is based on the inviscid short-wavelength Lagrangian theory developed by Bayly
(1986) and Craik & Criminale (1986), then generalized by Friedlander & Vishik
(1991) and Lifschitz & Hameiri (1991). In this approach, perturbations are assumed
to be sufficiently localized to be advected along flow trajectories and are sought in
the form of local plane waves

(u, p) = (u(t), p(t))eik(t)·r . (2.11)

This method has been applied to the elliptical instability with global rotation by
Le Dizès (2000). Here, we briefly recall his work, then include the boundary viscous
effects, and present the results in a way directly relevant to our experiments.

In the frame rotating at the global rotation rate ΩG (i.e. where the shear is
stationary), the two-dimensional basic flow in our container is described at leading
order in ε by the stream function (in polar coordinates)

Ψ = −r2

2
(1 − ε cos(2θ)), (2.12)

where ε is the eccentricity of the elliptical streamline. Replacing Ψ in the linearized
Euler equations by its expression (2.12) and decoupling the system in space and time,
immediately gives the wavevector

k(t) = k

(
sin(a)√

A
cos(χt), sin(a)

√
A sin(χt), cos(a)

)
, (2.13)

where k is a constant, A=
√

(1 + ε)/(1 − ε) is the ellipticity, χ =
√

1 − ε2, and a is the
angle between the flow rotation axis and the wavevector. Writing ΩG = ΩG

0 + εΩG
1 +

O(ε2) and a = a0 + εa1 + O(ε2), the perturbation analysis for small eccentricity gives
at order 0 in ε the frequency f of the plane wave solution of the linearized Euler
equations:

f = ±2
(
1 + ΩG

0

)
cos(a0). (2.14)

According to Le Dizès (2000), an elliptical instability is possible if the forcing terms
due to the elliptical deformation oscillate at the same frequency as the inertial wave,
which means in our case if f =1. From (2.14), this is only possible if ΩG

0 � −1/2
or ΩG

0 � −3/2, in agreement with the result (2.8) from the global analysis. Then, at
order 1 in ε, the solvability conditions directly determine the exponential growth rate
of the elliptical instability (Le Dizès 2000):

σ =

√(
3 + 2ΩG

4(1 + ΩG)

)4

ε2 − (1 − 2|1 + ΩG| cos(a))2. (2.15)

Assuming that the viscous dissipation is of order ε, viscous effects on the localized
perturbations can be easily taken into account by adding the viscous damping rate
(Craik & Criminale 1986)

−k2Re−1. (2.16)
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to the expression (2.15). Here Re is the Reynolds number defined by Re = Ω̃F R̃2/ν and
ν the kinematic viscosity of the fluid. Viscous effects on the surface of the container
for plane wave perturbations can be estimated using the work of Kudlick (1966) (see
also Kerswell & Barenghi 1995), introducing corrections of order Re−1/2. For the
(−1, 1) resonance in the cylindrical container, the growth rate is finally given by

σ =

√(
3 + 2ΩG

4(1 + ΩG)

)4

ε2 −
(
1 − 2|1 + ΩG| cos(a) + Im(sv)Re−1/2

)2

− Re(sv)Re−1/2 − k2Re−1, (2.17)

where Im(sv) and Re(sv) stand respectively for the imaginary part and the real part
of the boundary viscous coefficient determined for the cylinder:

sv =
4 − x2

4
√

2(1 + k2 − x/2)

(
(1 + i)(2 − x)(1 + k2 − 2x/(2 − x))√

2 + x

+
(1 − i)(2 + x)(1 + k2 − 2x/(2 + x))√

2 − x
+ (1 + i)(1 + k2)

H̃

R̃

√
x

)
(1 + ΩG)1/2

R̃

H̃
, (2.18)

where

x =

∣∣∣∣ ΩG

1 + ΩG
− 1

∣∣∣∣. (2.19)

This complex formula can be used to interpret the experiments, provided the
local parameters (k, a) are related to the global properties of the instability. This
is immediately clear when looking at the coupling between the symmetrical modes
m = −1 and m =1, which possess both the same axial wavenumber γ and the same
radial wavenumber β defined by (2.2) and (2.4). In the limit of large k relevant to the
local approach, (k, a) are simply

k =
√

β2 + γ 2, cos(a) =
γ√

β2 + γ 2
. (2.20)

For given values of (R̃, H̃ , Ω̃F , ν, ε) and for a chosen radial structure defined by β ,
(2.17) determines bands of instability depending on the global rotation rate ΩG. Each
band corresponds to a given axial structure determined by the number n of axial
half-periods. It is more or less centred on the perfect resonance given by the global
approach, but a small detuning of typically ±0.05 on ΩG for Re ∼ 103 is allowed. Two
examples of these theoretical predictions for the simplest but dominant mode (−1, 1, 1)
are shown in figure 4, together with our experimental data. The resonance bands are
separated by large regions with no resonance for ΩG � 0 (i.e. for cyclones). For
ΩG � 0 (i.e. for anticyclones), they progressively overlap, and immediatly disappear
once the global rotation rate reaches a critical value ΩG

c ∼ −1/2.

2.2. Experimental study

A series of experiments was performed using a cylinder of height H̃ = 21.4 cm and
eccentricity ε =0.085, systematically changing Ω̃F and Ω̃G in order to test the various
conclusions of the two complementary theoretical approaches. We want to observe
experimentally (i) the selective excitation of a given resonance depending on ΩG,
as indicated by the global theory, and (ii) the rapid increase in wavenumber and
growth rate as well as the sudden disappearance of the instability when decreasing
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Figure 4. Viscous growth rate of the elliptical instability mode (−1, 1, 1) determined by the
local analysis as a function of the global rotation rate ΩG for a given cylinder of radius
R̃ = 2.75 cm, height H̃ = 21.4 cm, eccentricity ε = 0.085, filled with water (ν =10−6 m2 s−1):
(a) Ω̃F = 0.505 ± 0.005Hz (Re= 2.40 × 103) and (b) Ω̃F = 0.255 ± 0.002 Hz (Re= 1.21 × 103).
Triangles stand for experimental measurements and solid lines for theoretical predictions. The
predicted number n of axial half-wavelengths increases by 1 from the right to the left on
each resonant band, starting from n= 2 in (a) and n= 3 in (b); measured values are indicated
above each experimental point. Note that in (a), additional resonances were observed for ΩG

in the range [−0.507; −0.403]; nevertheless, because of their small wavelength and their rapid
growth rate, quantitative measurements were not accurate.

ΩG toward −1/2, as indicated by the local theory. Our protocol is the same for all the
experiments presented here. First, we set the global rotation to its assigned value and
wait for solid-body rotation to take place in the container. Then we start the rotation
of the container: a spin-up phase first occurs, before the possible development of
an instability. The flow is visualized in the frame rotating at Ω̃G using a light plane
illuminating the container that is filled with water seeded by kalliroscope particles.
The elongated and flat shape of these reflective flakes forces them to align in the strain
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Figure 5. Spatiotemporal diagrams obtained by extracting the same line parallel to the
rotation axis in each image of a given video sequence: (a) mode (0,2,1) with n= 5 shown in
figure 7, with Ω̃F = 1.000 Hz (Re= 4.75 × 103) and Ω̃G = 0.110 Hz; (b) mode (1,3,1) with n= 6
shown in figure 7, with Ω̃F = 1.000 Hz (Re= 4.75 × 103) and Ω̃G =0.198 Hz. z stands for the
distance along the rotation axis, from z = 0 to z = 21.4 cm.

field and allows visualization of the velocity field. In particular, the rotation axis and
its undulations are clearly visible. The experimental (integer) wavenumber is then
simply determined by dividing the cylinder length by the mean measured wavelength
of the identical structures along the axis, and the mode frequency is measured from
spatiotemporal diagrams such as those shown in figure 5.

All experiments presented are carried out near the instability threshold: the
characteristic growth time is then much larger than the spin-up time and decorrelation
of the two phenomena is expected. In the immediate vicinity of threshold, the unstable
mode reaches a stable saturation state. For larger values of the Reynolds number, the
mode grows continuously, until it breaks down into small scales. In some cases, the
flow relaminarizes through viscous dissipation and a new cycle starts, as also noticed
by Malkus (1989) and Eloy et al. (2000).

2.2.1. Observed resonances in the cylinder

A series of experiments was first performed to observe the various possible
resonances in the cylinder by changing Ω̃F and Ω̃G only. Results are reported
in tables 1 and 2, and corresponding pictures are shown in figures 6 and 7. Good
agreement is found with the linear inviscid global approach: stationary mode (−1, 1, 1)
with a sinusoidal rotation axis and various wavelengths (figure 6) as well as other
more exotic modes recognizable by their complex radial structure (figure 7) and/or by
their periodic behaviour (figure 5) can be selected by changing the dimensionless ratio
ΩG only, provided the Reynolds number is large enough. Only two limitations are
to be noted. First, pulsations of oscillatory modes are always slightly overestimated
by the linear theory, as also observed by Eloy et al. (2003) in the non-rotating case.
This is presumably due to a frequency detuning induced by nonlinear effects, as
explained by Waleffe (1990). Secondly, the wavenumber of the mode (−1, 1, 1) for
n � 7 typically (i.e. for ΩG < −0.29 typically) does not exactly match predictions
of the normal-mode analysis: this is due to the overlapping of the various possible
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Theory Experiments

ΩG n Ω̃F (Hz) Ω̃G (Hz) ΩG n

0.980 2 0.506 0.499 0.968 2
0.285 3 0.255 0.077 0.302 3

0.500 0.113 0.226 3
0.503 0.145 0.288 3
0.504 0.126 0.250 3
0.504 0.151 0.300 3
0.506 0.139 0.275 3
0.506 0.131 0.259 3
0.506 0.159 0.314 3
0.506 0.167 0.330 3
1.002 0.250 0.2495 3

−0.0194 4 0.257 0 0 4
0.503 0 0 4

−0.178 5 0.254 −0.042 −0.165 5
0.505 −0.087 −0.172 5
0.505 −0.082 −0.162 5
0.505 −0.069 −0.137 5

−0.270 6 0.255 −0.059 −0.231 6
0.255 −0.057 −0.2235 6
0.507 −0.134 −0.264 6
0.255 −0.075 −0.294 7

−0.328 7 0.508 −0.163 −0.321 9
−0.367 8 0.508 −0.186 −0.366 11
−0.394 9 0.507 −0.203 −0.400 14

0.253 −0.102 −0.403 12
−0.455 14 0.507 −0.231 −0.456 20
−0.465 16 0.255 −0.118 −0.463 15

0.255 −0.118 −0.463 18
−0.467 28 0.507 −0.237 −0.4675 20
−0.500 ∞ 0.500 −0.249 −0.498 25

0.507 −0.257 −0.507 25

Table 1. Theoretical predictions for the mode (−1, 1, 1) of instability and comparison with
experimental results for a cylinder of radius R̃ =2.75 cm, height H̃ =21.4 cm, eccentricity
ε = 0.085 and various values of the global rotation ΩG. Typical accuracy on Ω̃F and Ω̃G

is ±0.005 Hz. n stands for the (integer) number of axial half-wavelengths. Pictures of the
corresponding experiments are shown in figure 6. Theoretical predictions correspond to
the closest perfect resonance given by the global analysis. As shown by the local analysis,
non-perfect resonances due to a small detuning are theoretically possible and experimentally
observed; in particular, elliptical instability takes place slightly below the threshold ΩG = −1/2
determined by the global approach.

resonances and to the viscous damping of the smallest structures, as suggested by the
short-wavelength analysis (see figure 4).

When several theoretical resonances are close together, we sometimes observed the
superposition or the succession in time of the different modes. The precise mechanism
governing this phenomenon is probably controlled by nonlinear processes and its
description is beyond the scope of this paper. Note however that there is a great
tendency for the mode with the simplest axial and radial structures to occur alone.
In particular, in the range −1/2 <ΩG < −0.13 where resonance bands overlap (see
figure 4), the mode (−1, 1, 1) is always the only one excited.
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Theory Experiments

Mode ΩG n ζ Ω̃F (Hz) Ω̃G (Hz) ΩG n ζ

(−1,1,2) 0.533 5 0 1.000 0.440 0.440 5 0
1.000 0.535 0.535 5 0

(−1,1,2) 0.131 7 0 0.499 0.054 0.108 7 0
0.508 0.070 0.138 7 0

(0,2,1) 0.794 3 1.08 1.000 0.794 0.794 3 1.01
(0,2,1) 0.368 4 1.06 1.006 0.377 0.375 4 1.06

1.002 0.368 0.367 4 1.01
(0,2,1) 0.125 5 1.05 0.508 0.070 0.138 5 0.996

1.000 0.110 0.110 5 0.965
0.748 0.084 0.112 5 0.972

(0,2,2) 0.5785 6 1.03 1.374 0.801 0.5835 6 0.968
(0,2,2) 0.220 8 1.03 0.996 0.222 0.2225 8 0.962
(1,3,1) 0.399 5 2.08 1.92 0.801 0.417 5 2.01

1.004 0.418 0.399 5 1.94
(1,3,1) 0.198 6 2.06 1.000 0.198 0.198 6 2.00
(1,3,2) 0.416 8 2.04 1.000 0.415 0.415 8 1.98

Table 2. As in table 1 but for the other observed modes of instability. Corresponding pictures
are shown in figure 7. ζ stands for the frequency of the elliptical resonance: typical precision
on the experimental values is 10 %.

2.2.2. Quantitative analysis of the mode (−1, 1, 1)

The stationary mode (−1, 1, 1) is especially interesting since its growth rate can
be determined experimentally: from sequences of images, we measure the maximum
amplitude of the sinusoidally deformed rotation axis; its temporal evolution is then
fitted with an exponential growth, which can be compared to the exponential growth
rate determined by the local theory (2.17). An example of data fitting is shown in
figure 8 (see also Eloy et al. 2003). The variations of the growth rate with respect
to ΩG are presented in figure 4 together with the viscous theoretical estimate (2.17).
First, one can see that the threshold for instability agrees with the theory, with for
instance the sharp disappearance of resonant modes at ΩG

c = −0.520 ± 0.004 for
Ω̃F = 0.505 ± 0.005 Hz. Measurements of the growth rate qualitatively agree with the
theory, regarding the general increasing trend when ΩG decreases toward −1/2, and
also regarding the specific shape of one resonance band (see for instance in figure 4a
the band around ΩG = 0.285 that we have explored in detail). Quantitatively, orders
of magnitude also agree, but theoretical values always overestimate experimental
values. Three main explanations can be provided. First, nonlinear effects were not
taken into account in the theory, but are expected to be stabilizing (Eloy et al. 2003).
Then, recall that the theoretical estimate is based on a short-wavelength (i.e. large
k) asymptotic analysis: the discrepancy could therefore be associated with finite-k
effects. One can in particular see that the systematic error significantly decreases
when going toward ΩG = −1/2, i.e. when the number of observed axial structures
rapidly increases, and the experiment more closely agrees with the analytical limit.
The last source of discrepancy is experimental. In our set-up, rollers only deform
the central part of the cylinder: consequently, the eccentricity changes along the axis,
which directly influences the growth rate, as suggested by (2.17). This is especially
important for large n, where instabilities are localized in the deformed part of the
cylinder only, as shown for instance in the last picture of figure 6. To quantify this
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ΩG = +0.499 Hz
n = 2

~

ΩG = +0.145 Hz
n = 3

~

ΩG = –0.069 Hz
n = 5

~

ΩG = –0.134 Hz
n = 6

~

ΩG = –0.163 Hz
n = 9

~

ΩG = –0.186 Hz
n = 11

~

ΩG = –0.203 Hz
n = 14

~

ΩG = –0.231 Hz
n = 20

~

ΩG = –0.257 Hz
n = 25

~

ΩG = 0 Hz
n = 4

~

Figure 6. Variation of the wavelength of the mode (−1, 1, 1) versus the global rotation Ω̃G

for a given cylinder of radius R̃ = 2.75 cm and height H̃ = 21.4 cm with an eccentricity ε =0.085
rotating at Ω̃F = 0.505 ± 0.005 Hz (Re= 2.40 × 103). Here, all pictures have been rotated by
90◦ for convenience.

effect, we performed two experiments with Ω̃F = 0.993 Hz and Ω̃G =0 Hz with rollers
of height 13.4 cm (i.e. the standard rollers) and 4.9 cm respectively: the measured
growth rate then decreases from 0.090 s−1 to 0.052 s−1, which qualitatively confirms
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ΩG = 0.110 Hz
n = 5

~

ΩG = 0.368 Hz
n = 4

~

ΩG = 0.198 Hz
n = 6

~

ΩG = 0.418 Hz
n = 5

~

ΩG = 0.440 Hz
n = 5

~

ΩG = 0.222 Hz
n = 8

~

ΩG = 0.415 Hz
n = 8

~

ΩG = 0.794 Hz
n = 3

~

mode (0, 2, 1)

mode (1, 3, 1)

mode (–1, 1, 2)

mode (0, 2, 2)

mode (1, 3, 2)

Figure 7. Pictures of the observed modes of elliptical instability depending on the global
rotation Ω̃G for a given cylinder of radius R̃ =2.75 cm and height H̃ = 21.4 cm with an
eccentricity ε = 0.085 rotating at Ω̃F = 1.001 ± 0.005Hz (Re= 4.76 × 103). Here, all pictures
have been rotated by 90◦ for convenience.

the suggested correction, but also demonstrates that the induced correction is not
directly proportional to some mean value of the deformation.

Finally, note that the main limitation of our experimental device comes from the
rotation rate of the rotating table (up to ±1 Hz only). Taking into account viscous
dissipation, it was not possible to choose Ω̃F and Ω̃G to explore the range below
ΩG = −1. We can only expect, in the light of the good agreement between theoretical
predictions and experiments for ΩG � −1, that this will also be the case for ΩG < −1,
and in particular, that instabilities will reappear for ΩG � −3/2.
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Figure 8. Initial evolution over time of the maximum radial amplitude of the mode (−1, 1, 1)
in the cylinder of radius R̃ = 2.75 cm and height H̃ = 21.4 cm with an eccentricity ε =0.085
rotating at Ω̃F = 0.508Hz (Re= 2.41 × 103) with a global rotation of Ω̃G = −0.163Hz. The
best exponential fit indicates a growth rate σ =0.098 s−1.

3. Theoretical and experimental study in the sphere
3.1. Inviscid global study

The eigenmodes of the sphere have been studied in the non-rotating case by Greenspan
(1968). His study can be modified to take into account an additional Coriolis force,
similarly to what has been done for the cylindrical case in § 2.1.1. The global rotation
leads to exactly the same changes as in the cylinder and the algebra is not detailed
here. We simply show in figure 9 the dispersion relation points for the m = −1 and
m = 1 eigenmodes, representing the evolution of ω̃ = (ω − m)/(1 + ΩG) + m (rather
than ω in the non-rotating case) as a function of the spatial wavenumber.

The problem of resonances is more complex than in the cylinder. There, as
demonstrated by Eloy et al. (2003), the best coupling appears between modes having
the same radial and axial structures. In the sphere, as shown in Greenspan (1968),
the modes are indexed by the degree d of the Legendre polynomial determining their
spatial structure, n = d − |m| being equivalent to a spatial wavenumber; but the
analytical approach does not provide a direct and independent quantification of the
axial and radial structures of the eigenmodes. It is thus more difficult to determine
the general conditions for the best resonance, and additional theoretical work is
currently in progress.

Nevertheless, in the context of the present study, we simply focus on the coupling
between the lowest points of the m = 1 eigenmode and the highest points of the
m = −1 eigenmode, corresponding to a principal mode (−1, 1, 1) in the cylinder: both
modes have a single radial structure and the number of axial half-wavelengths is
directly given by n. Then, conditions for resonance are simply n−1 = n1 and ω−1 =ω1,
or ω̃1 − ω̃−1 = 2ΩG/1 + ΩG, as illustrated in figure 9. In contrast to the non-rotating
case where the only exact resonance in the sphere leads to the spin-over mode (i.e. a
solid-body rotation around the axis of maximum strain, see Lacaze et al. 2004), more
complex instabilities can be triggered by the global rotation, as sketched in figure 10.
We will now show that these unstable modes (−1, 1, 1) are indeed prevalent in the
experiments.
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Figure 9. Dispersion relation points for m= −1 (stars) and m= 1 (squares) in a sphere. This
graph resembles the one presented in figure 2 for the cylinder, replacing the number n of axial
half-wavelengths by the number n of spatial half-wavelengths (see the complete resolution in
Greenspan 1968). Large symbols stand for the eigenmodes with the simplest radial structure:
n is then the number of axial half-wavelengths, as for the cylinder. Using the same notation
as for the cylinder, a resonance (−1, 1, 1) is excited providing the distance between the m= 1
and m= −1 points is given by (2.10): examples for the non–rotating case (i.e. the spin-over)
and for a rotating case are explicitly shown. Resonances between eigenmodes with the simplest
radial structure are sketched in figure 10; they are the only ones studied in the present paper.

3.2. Observed resonances in the sphere

A series of experiments was performed in the sphere of radius R̃ = 2.175 cm with
a fixed eccentricity ε = 0.20, systematically changing Ω̃G and Ω̃F to excite various
resonances. In the explored range −0.6 <ΩG < 0, we observed the same behaviour as
in the cylinder: the principal modes (−1, 1, 1) which possess a single radial structure
are the dominant modes, and when ΩG decreases towards −1/2, the number of
axial structures as well as the growth rate of the instability rapidly increase (see
figure 11), until the instability suddenly disappears in the vicinity of ΩG ∼ −1/2. As
shown in table 3, excited modes with n � 5 are in good agreement with analytical
predictions for ΩG in a resonance band typically of ±0.03 around the theoretical
perfect-resonance value. We think that the discrepancies for n � 5 are due to the
overlapping of resonant bands, as observed in the cylinder (see figure 4). With
our experimental device, the visualization in the sphere was not precise enough
to allow a systematic measurement of the growth rate of the elliptical instability,
but we determined experimentally the viscous threshold of instability for two given
values of the flow rotation rate: ΩG

c = −0.557 ± 0.004 for Ω̃F = 0.501 ± 0.005 Hz and
ΩG

c = −0.551 ± 0.004 for Ω̃F =0.747 ± 0.005 Hz. We recall that in the absence of
global rotation, the only perfect resonance and the only observed mode in the vicinity
of threshold (i.e. at low Reynolds number) is the spin-over, corresponding to a single
additional rotation around the axis of maximum strain (see Lacaze et al. 2004).
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Figure 10. Sketches of the flow structure in a sphere associated with the resonance (−1, 1, 1)
for various n. The instability modes have a single radial structure and the number of axial
half-wavelengths is directly given by n. (a) Effective rotation axis in the (O, y, z) plane resulting
from the superimposition of the base flow rotation and of the instability mode. Dashed lines
stand for viscous boundary layers, where the fluid motion progressively matches the rigid
container rotation. (b) Typical streamlines in the (O, x, z) plane of the instability mode. n = 1
corresponds to the spin-over mode (Lacaze et al. 2004); n = 2 corresponds to the twin-vortex
mode of Boubnov (1978); and to the best of our knowledge, the other modes have not yet
been observed experimentally.

4. Conclusion
In this paper, we have presented an analytical and experimental study of the

influence of the Coriolis force on the elliptical instability. For a given container –
either cylindrical with a fixed aspect ratio H̃ /R̃ or spherical – the global rotation rate
allows various resonances to be selected, in good agreement with the global theory.
In particular, we have observed in the sphere numerous complex stationary modes
at relatively low values of the Reynolds number, in addition to the simple spin-over
that takes place in the non–rotating case. For both the cylinder and the sphere, on



Coriolis effects on elliptical instability 339

ΩG = 0, n = 1
~

ΩG = –0.226 Hz, n = 4
~

ΩG = –0.279 Hz, n = 7
~

ΩG = –0.170 Hz, n = 2
~

ΩG = –0.242 Hz, n = 5
~

ΩG = –0.264 Hz, n = 6
~

ΩG = –0.196 Hz, n = 3
~

Figure 11. Pictures of the flow structure associated with an instability mode (−1, 1, 1) for
different global rotation rates Ω̃G in the deformed sphere with an eccentricity ε = 0.20 and a
fixed fluid rotation Ω̃F = 0.500 ± 0.005 Hz (Re=1.49 × 103). The measured number n of axial
half-wavelengths is also indicated. Here, all pictures have been rotated by 90◦ for convenience.

progressively decreasing the global rotation rate, we have observed that various bands
of resonance coexist for ΩG � ΩG

c ∼ −1/2, first separated by large regions of stability
(especially for cyclones, i.e. ΩG > 0), then progressively overlapping (especially for
anticyclones, i.e. ΩG < 0). All resonances sharply disappear once the global rotation
rate reaches a critical value ΩG

c ∼ −1/2. Focusing on the stationary modes (−1, 1, 1),
we have shown that the instability wavenumber as well as its growth rate significantly
increase and reach a maximum just before ΩG

c . In the cylindrical geometry, all these
results agree quantitatively with the theoretical estimations obtained from a mixed
theory, where the viscous growth rate determined by a short-wavelength analysis in
the limit of small elliptical deformations is expressed in terms of global parameters.
Our conclusions for the cylinder and the sphere also agree qualitatively with the
general trend observed by Afanasyev (2002) for vortex pairs and by Stegner et al.
(2005) for Kármán vortex streets, even though our experimental set-up is totally
different (i.e. their vortices are not confined and are subjected to rather large elliptical
deformations). Both studies report the systematic destruction of elliptical anticyclones
by a sinusoidal mode with a decreasing wavelength when ΩG decreases to a certain
critical value, corresponding to the overlapping (−1, 1, 1) resonances mentioned here.
We thus argue that this behaviour is universal, except for the explicit value of ΩG

c

that will depend both on the vortical structure considered and on the value of the
eccentricity (see also Sipp et al. 1999; Le Dizès 2000).
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Theory Experiments

ΩG n Ω̃F (Hz) Ω̃G (Hz) ΩG n

0 1 0.500 0 0 1
0.747 0 0 1

−0.338 2 0.500 −0.141 −0.282 2
0.500 −0.170 −0.340 2
0.500 −0.184 −0.368 2
0.747 −0.232 −0.311 2
0.747 −0.261 −0.349 2
0.755 −0.217 −0.287 2
0.755 −0.242 −0.3205 2
0.755 −0.250 −0.331 2
0.755 −0.252 −0.334 2
0.755 −0.270 −0.358 2

−0.4145 3 0.500 −0.194 −0.388 3
0.500 −0.196 −0.392 3
0.500 −0.200 −0.400 3
0.500 −0.202 −0.404 3
0.500 −0.210 −0.420 3
0.747 −0.299 −0.400 3

−0.446 4 0.500 −0.218 −0.436 4
0.500 −0.226 −0.452 4
0.747 −0.341 −0.4565 4
0.755 −0.318 −0.421 4
0.755 −0.333 −0.441 4
0.755 −0.346 −0.458 4

−0.473 5 0.500 −0.238 −0.476 5
−0.483 8 0.500 −0.242 −0.484 5
−0.4865 9 0.750 −0.365 −0.487 5
−0.489 10 0.500 −0.266 −0.488 5
−0.500 ∞ 0.500 −0.250 −0.500 6

0.747 −0.373 −0.499 5
0.500 −0.264 −0.528 6
0.500 −0.269 −0.538 6
0.500 −0.279 −0.558 7
0.750 −0.382 −0.509 5
0.750 −0.383 −0.511 5
0.750 −0.401 −0.535 5
0.750 −0.406 −0.541 6
0.750 −0.408 −0.544 6
0.747 −0.388 −0.519 5
0.747 −0.401 −0.537 5
0.747 −0.409 −0.5475 6

Table 3. Measured parameters and theoretical predictions for the instability modes (−1, 1, 1)
observed in a sphere of radius R̃ = 2.175 cm and eccentricity ε = 0.20. The number n of axial
half-wavelengths is measured for various values of Ω̃G and Ω̃F . Theoretical results come from
the determination of perfect resonances by the global approach. Sketches and experimental
pictures of the corresponding mode are shown in figures 10 and 11 respectively.

Conclusions for the spherical geometry are especially interesting in the geophysical
and astrophysical contexts. For instance, complex motions can be expected in the
Earth’s core in addition to the simple spin-over excited by both precession and
elliptical instability. More generally, one can imagine that binary stars and moon–
planet systems where the elliptical instability is expected to occur, encounter various
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bands of instability during their evolution: depending on the relative changes in their
rotation and revolution rates, different and complex histories for energy dissipation
and flow motions can thus be expected. Clearly, the role of the elliptical instability in
natural flows, as suggested for instance by Kerswell & Malkus (1998), still requires
more work, in order to fully understand the implications of all natural complexities
for the standard and well-known hydrodynamical model (see also Lacaze et al. 2006;
Le Bars & Le Dizès 2006).

The authors would like to thank David Guimbard for his constructive comments
on a earlier version of this paper.
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